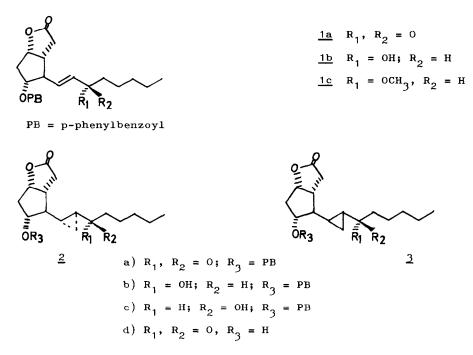
THE SYNTHESIS OF 13, 14-DIHYDRO-13, 14-METHYLENE-PGF_{2 α} AND PGE₂¹

B. Raduchel, U. Mende, G. Cleve, G.-A. Hoyer and H. Vorbruggen* Research Laboratories Schering AG, Berlin - Bergkamen, D-1 Berlin 65, Germany

(Received in UK 6 January 1975; accepted for publication 16 January 1975)

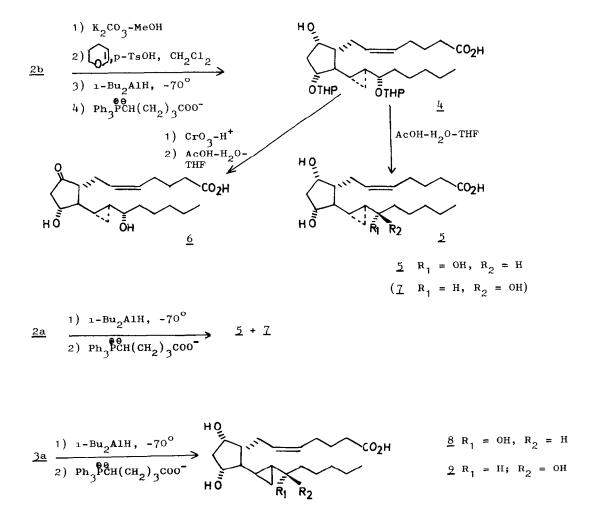
The pronounced biological activity of 13,14-dihydro-PGF $_{2\alpha}^{2}$ arose our interest in the synthesis of the corresponding cyclopropyl compounds, the 13,14-dihydro-13,14-methylene-prostaglandins.


The reaction of the Corey-intermediate $\underline{1a}^3$ with dimethyloxosulfoniummethylid⁴ resulted in the elimination of p-phenylbenzoic acid and formation of dienones, whereas $\underline{1b}$ failed to react under a variety of conditions of the Simmons-Smith reaction⁵.

Thus we used the new $Pd(OAc)_2/CH_2N_2$ reagent^{6a} which adds cis to α , β -unsaturated carbonyl systems^{6b}. On treatment of <u>1a</u> with excess CH_2N_2 in the presence of catalytic amounts of $Pd(OAc)_2$ we obtained a 92% yield of a 2:1mixture of two cyclopropyl ketones (<u>2a</u> and <u>3a</u>) which could be readily separated (SiO₂ column) to give pure <u>2a</u> [mp 112-114°, $[\alpha]_D + 2.3^\circ$ (CHCl₃)] and <u>3a</u> [mp 105°, $[\alpha]_D - 211^\circ$ (CHCl₃)]. Transesterification (K₂CO₃-MeOH) of <u>2a</u> and <u>3a</u> yielded the alcohols (<u>2d</u> and <u>3d</u>).

Reduction of <u>2a</u> (NaBH₄ - 1-propanol - THF, 0°) provided two epimeric alcohols <u>2b</u> (δ = 3.08 ppm, q, <u>J</u> = 6.5 Hz, 15-H) and <u>2c</u> (δ = 2.96 ppm, q, <u>J</u> = 7 Hz, 15-H)⁹ whereas <u>3a</u> yielded <u>3b</u> (δ = 2.96 ppm, q, <u>J</u> = 7 Hz, 15-H) and <u>3c</u> (δ = 3.05 ppm, q, <u>J</u> = 6.5 Hz, 15-H).

The (15S)-configuration was established for the less polar reduction products (<u>2b</u> and <u>3b</u>) by reaction of <u>1b</u>³ with a large excess of CH_2N_2 in the presence of $Pd(OAc)_2$ during 35 min to give a 20% yield of a mixture of epimeric 13,14methylene alcohols which were identical with <u>2b</u> and <u>3b</u>. As a side product the ether <u>1c</u> (d = 3.15, s, OCH_3 ; 3.48, q, <u>J</u> = 6 Hz, 15-H; 5.47 ppm, m, 13- and 14-H) was isolated in ca. 20% yield. (Scheme I)


The CD spectra (dioxane) of $2d (\lambda_{max} = 282 \text{ nm}, \Delta \ell = +1.16)$ and $3d (\lambda_{max} = 282 \text{ nm}, \Delta \ell = -1.11$, mirror image of the 2d-spectrum) combined with the nmr data (see below) permit the assignment of the (13R,14S)-configuration to 2d and the (13S,14R)-configuration to 3d. The assignment of 2d is based on the results of Pelissier et al.⁷ and Tocanne⁸ who calculated the preferred conformation of the carbonyl-group in 2-alkyl-cyclopropyl ketones and assigned their absolute configuration on the basis of their CD and nmr spectra.

When <u>2b</u> was submitted to the sequence of reactions as described in scheme II³, the PGF₂₀-analogue <u>5</u> as well as the PGE₂-analogue <u>6</u> were obtained.

Reduction of <u>2a</u> with dissobutylaluminium hydride and Wittig-reaction (see scheme II) afforded an easily separable mixture of <u>5</u> (δ^2 = 3.09 ppm, m, W 1/2 = 14 Hz, 15-H) and <u>7</u> (δ^2 = 2.96 ppm, q, <u>J</u> = 7 Hz, 15-H). Since <u>5</u> has the (15S)configuration the (15R)-configuration was assigned to the less polar derivative <u>7</u> The tlc data thus agree with the reported slightly less polar nature of the (15R)-epimer¹⁰. <u>3a</u> gave analogously <u>8</u> (δ = 2.86 ppm, q, <u>J</u> = 7 Hz, 15-H) and <u>9</u> (δ = 3.06 ppm, q, <u>J</u> = 6.5 Hz, 15-H).

Since the 15-H in <u>2c</u>, <u>3b</u>, <u>7</u> and <u>8</u> in its weighted average is slightly more above the anisotropic cyclopropane ring¹¹ than the 15-H in <u>2b</u>, <u>3c</u>, <u>5</u> and <u>9</u> the observed chemical shifts support the configurational assignment by CD and tlc data. The analogous preparation of 10,11-methylene-PGA₂-methylester¹² will be described elsewhere¹³.

REFERENCES

- 1) Prostaglandin-analogues: I. Communication.
- M. Bygdeman, K. Grêen, M. Toppozada, N. Wiqvist and S. Bergstrom, Life Sciences <u>14</u>, 521 (1974).
- E.J. Corey, S.M. Albonico, U. Koelliker, T.K. Schaaf and R.K. Varma, J. Amer. Chem. Soc. <u>93</u>, 1491 (1971).
- 4) E.J. Corey and M. Chaykovsky, 1bid. <u>87</u>, 1353 (1965).
- 5) H.E. Simmons, T.L. Cairns, S.A. Vladuchick and C.M. Hoiness, Org. Reactions <u>20</u>, 1 (1973).
- 6) <u>a</u> R. Paulissen, A.J. Hubert and Ph. Teyssie, Tetrahedron Lett. 1465 (1972).
 <u>b</u> preceeding paper.
- 7) M. Pelissier, A. Serafini, J. Devanneaux, J.F. Labarre and J.F. Tocanne, Tetrahedron <u>27</u>, 3271 (1971).
- 8) J.F. Tocanne, 1bid. <u>28</u>, 389 (1972).
- 9) NMR solvent: CDC1₃.
- 10) a J.E. Pike, F.H. Lincoln and W.P. Schneider, J. Org. Chem. <u>34</u>, 3552 (1969),
 <u>b</u> N.H. Andersen and E.M.K. Leovey, Prostaglandins <u>6</u>, 361 (1974).
- 11) C.D. Poulter, R.S. Boikess, J.I. Brauman and S.Winstein, J. Amer. Chem. Soc. <u>94</u>, 2291 (1972).
- 12) P. Vogel and P. Crabbé, Helv. Chim. Acta <u>56</u>, 557 (1973).
- 13) B. Raduchel, W. Skuballa and H. Vorbruggen to be published.